Data Compression Using a Dictionary of
Patterns

Angel Kuri' and José Galaviz?

! Department of Computing, ITAM.
akuri@itam.mx
2 Department of Mathematics, Facultad de Ciencias, UNAM.
jgc@fciencias.unam.mx

Abstract. Most modern lossless data compression techniques used to-
day, are based in dictionaries. If some string of data being compressed
matches a portion previously seen, then such string is included in the
dictionary and its reference is included every time it occurs. A possi-
ble generalization of this scheme is to consider not only strings made of
consecutive symbols, but more general patterns with gaps between its
symbols. In this paper we introduce an off-line method based on this
generalization. We address the main problems involved in such approach
and provide a good approximation to its solution.

Categories and Subject Descriptors: E.4 [Coding and Information
Theory|-data compaction and compression; 1.2.8 [Artificial Intelli-
gencel:Problem Solving, Control Methods, and Search—heuristic meth-
ods.

General Terms: Approximation algorithms, heuristics

Additional Key Words and Phrases: Combinatorial optimization, NP-
hardness

1 Introduction

Most of the successful modern lossless compression methods used today are based
in dictionaries, such as the Lempel-Ziv family [10]. In these approaches, strings
of symbols that occur frequently in the data being compressed (which we call the
sample) are included in a dictionary. Every occurrence of some of these strings
in the sample is further replaced by a reference to its location in the dictionary.
If strings in the dictionary are large and frequent enough, this scheme achieves
sample compression.

These methods only consider strings of consecutive symbols. In this paper we
will introduce a generalization by considering “strings” with gaps, whose symbols
are no necessarily consecutive. This generalization will be called meta-symbol or
pattern in the rest of paper. A similar concept is used in [2] for approximate
string matching and is analogous to the concept of motif commonly used in
computational biology [5].

© A. Gelbukh, R. Monroy. (Eds.)
Advances in Artificial Intelligence Theory
Research on Computing Science 16, 2005, pp. 173-182

174 Kuri A., Galaviz J.

In this paper a meta-symbol is a sequence of symbols in some alphabet,
probably interspersed with don’t-care symbols or gaps of arbitrary length. The
symbol used to specify a gap is not in the alphabet and is called the gap symbol.
Those symbols in a meta-symbol that are in the alphabet are called solid symbols
or defined symbols. Hence, every string of one or more symbols in the alphabet
is a meta-symbol, and every string that begins and ends with symbols in the
alphabet, and has an arbitrary sequence of gap symbols and alphabet symbols
in between, is also a meta-symbol. We can establish the formal definition of
meta-symbol as follows:

Definition 1. Given a finite alphabet of symbols X, and a special symbol v ¢
X, called gap symbol, a meta-symbol p in X is any string generated by the
regular expression:

TupEu{yhr]

There are several features associated with every meta-symbol:

— The order of the meta-symbol, denoted o(p), is the number of solid or defined
symbols in meta-symbol p.

— The meta-symbol size, denoted |p|, is the total length of meta-symbol con-
sidering both, the solid and gap symbols.

A meta-symbol can be specified in several ways. In this paper our represen-
tation is made up by two vectors that describe, respectively, the contents, and
the structure of the meta-symbol. For example, if we use the underscore as the
gap symbol, the following is an order 5 and size 10 meta-symbol:

p1 =EL.ME__A.
that occurs in the string (see figure 1): S} =GTELKMIELAMAEPGLARTELVMWEQYYA.
Such meta-symbol can be specified by:

— The contents vector ¢(p) of the defined symbols in the meta-symbol p in the
order they appear. In our example ¢(p;) = [E, L, M, E, A]. Obviously, the
size (number of entries) of this vector is: |e(p)| = o(p)

— The structure vector d of the distances between every consecutive symbol
in ¢. In our example d(p1) = [1,2,2,4]. The size of this vector is: |d(p)| =

o(p) — 1.

We are interested in the search of meta-symbols that occur frequently in
longer strings of symbols in X. We will call sample to any string in X where
the meta-symbol search takes place. Hence we will require additional features
in order to characterize a meta-symbol relatively to the sample. Hence, given a
meta-symbol p that occurs in a sample S we define:

— The meta-symbol occurrence list, denoted L(p), as the increasing ordered
list of absolute positions where p occurs in S (the first symbol in a sample
is at position zero). In our previous example L(p;) = {2,7,19}.

Data Compression Using a Dictionary of Patterns 175

— The meta-symbol frequency, denoted f(p), as the number of times meta-
symbol p occurs in the sample S. In our example: f(p1) = 3.

— The rough coverage, denoted Cov(p), as the formal number of symbols in S,
generated (or covered) by all the occurrences of meta-symbol in the sample,
that is the product of frequency times the meta-symbol order. In the example
Cov(py) =5 x 3 =15.

— The effective coverage, denoted Coveg(p), as the actual number of symbols in
the sample covered by all the occurrences of meta-symbol. This is the rough
coverage defined above, minus the number of symbols in the sample covered
more than once by different meta-symbol occurrences. In our example, since
the letter E in position 7 is covered twice by different occurrences of p;, we
have: Coveg(p1) = 14.

Prrtititifiz22222222
011203456/7(18901234567890123456738
S;—— > GTELKMIELAMAEPGLARTELVMWEQYYA
p;—> EL E A
EL M E A
EL M E A

Fig. 1. The meta-symbol p; occurs three times in sample S;.

2 Meta-Symbol-based Data Compression

Our goal is to achieve data compression building a dictionary of frequent meta-
symbols found in the sample being compressed. Then every occurrence of a
frequent meta-symbol in the sample is replaced by a reference to its position
in the meta-symbol dictionary. Since such reference will be shorter than the
meta-symbol itself, data compression is achieved.

In order to apply this procedure we need to take several steps:

1. Identify a set P of frequent meta-symbols in a given sample S.

2. Determine the subset () C P that maximizes the compression ratio if it is
adopted as the dictionary.

3. Determine the best way for meta-symbol representation and encoding, and
the best way for reference encoding. The compressed sample will include
the, perhaps compressed, dictionary and the compressed representation of
the original sample.

In the first step it is needed to find frequent meta-symbols in the sample.
The kind of meta-symbols in definition 1 is very general, since the order and
gap run-length is not bounded. The ony restriction is imposed by our concept

176 Kuri A., Galaviz J.

of matching: we use rigid rater than flexible meta-symbols (where the gap run-
length can vary in different meta-symbol occurrences). This is a very general, and
well known, pattern discovery problem [9]. Unfortunately the reported algorithms
for the discovery of patterns of the kind we are interested in, have exponential
(on the sample size) time complexity [9]. However, if some prerequisites of or-
der and frequency are established, there exist more efficient algorithms. In [6] is
introduced the Teiresias algorithm, that performs pattern discovery given a min-
imum frequency and order. The patterns found are called mazimal. A pattern p
is maximal if for every other pattern ¢, such that p occurs inside g, there exist
occurrences of p, where ¢ does not occur. We found this approach very useful
and, in order to approximate the first step, we use our own implementation of
Teiresias algorithm.

The second step is a hard combinatorial optimization problem, in [4] we have
shown that it is in the class of NP-complete problems, and here we propose the
use of a heuristic in order to approximate the solution. Such approximation will
be further optimized by the use of local optimizers (hill climbers).

In the third step, the decisions about the encoding mechanism for the sample
re-expression and its dictionary, are guided (as those in the second step) by the
the Rissanen minimum description length (MDL) principle [7, 1]. The goal is the
simultaneous minimization of data required for the description of the sample
being compressed and the model that describes the compression. In our approach
we delegate the encoding decision to the compression algorithm, based on the
compressed size of the whole set (dictionary + sample re-expression) obtained
using different alternatives.

3 Selecting Good Subset of Meta-Symbols

The second step of the aforementioned process is the selection of a good subset
of the whole set of frequent meta-symbols found in the sample. The “goodness”
of a subset of meta-symbols is given by the compression ratio obtained if such
subset of meta-symbols is the dictionary.

Obviously the best subset also must cover a considerably large amount of
symbols contained in the sample, since every meta-symbol in the subset must
have a good coverage. Also it must have a low amount of data symbols covered
several times. That is, the best subset must have efficient meta-symbols: a large
amount of covered symbols but a small amount of symbols covered by another
meta-symbols or by different occurrences of the meta-symbol itself.

In order to evaluate such characteristic in every proposed meta-symbol we
require another concept which we call exclusive coverage. Given an order set of
meta-symbols @ (a list), the exclusive coverage of some meta-symbol p, denoted
Covexe(p, @), is the total number of symbols in the sample, covered by all the
occurrences of p, but not already covered by any other meta-symbol in Q.

Let S be a sample. We will denote by |S| the number of symbols in such
sample (its original size). Let P be a set of frequent meta-symbols found in S,
and @ C P a subset of frequent meta-symbols. Let ¢’ ¢ Q be the meta-symbol

Data Compression Using a Dictionary of Patterns 177

made of all the symbols in S not already covered by any meta-symbol in @,
therefore the set D(S,Q) = QU {¢'} is a possible dictionary to express S.
The word bit length needed to refer to any meta-symbol in D is:

r=r(Q) = [logy |D(Q)[] = [log, (IQ| +1)]

If f(q) denotes the frequency of meta~-symbol ¢ € @ in the sample S, then
the expression of S in terms of dictionary references is:

EQ =) rfl@=)Y_rfl@+r=r|> fl@+1

qeD q€Q q€Q

Now we need to determine the dictionary size in bits. For every meta-symbol
q € D(Q) we need to specify its o(q) defined symbols and its o(q) —1 gap lengths.
Let g be the bit length needed to express the gap runs, and let b be the bit length
needed to express every single symbol in D. Therefore the dictionary size in bits
is:
V(S,Q) = [bo(g) +g(olq) — 1)] + M(S,Q)

qeD

where M denotes the overhead implicit by the inclusion of a model required to
decode the single symbols in the dictionary. If the original symbols are encoded in
the dictionary using Huffman encoding, for example, then b will be approximated
by the average bit length of Huffman codewords and M is the amount of bits
used to store the frequency table required to decode the Huffman codes. In a
plain dictionary M = 0 and b = (8 bits).

We will denote with T'(S, Q) the size of the compressed sample using the
subset of meta-symbols), hence:

T(5,Q)=V(s.Q)+ EQ)
Now we can define the compression ratio:

Definition 2. The compression ratio obtained by using the subset of meta-
symbols @ is:

GS.Q) =1 T(fs’f” 1)

Denoting by p; the i-th meta-symbol contained in a set of meta-symbols, the
coverage of a subset of meta-symbols @ is:

COV(Q) = Z Covexc(pi7 Q \pz) (2)

pi€Q
We can now state our problem as follows:

Definition 3. OPTIMALMETA-SYMBOLSUBSET problem.
Given:

178 Kuri A., Galaviz J.

— A data sample S with |S| symbols.
— A set P = {p1,...,pn} of frequent meta-symbols of S with frequencies

f(p:) = f; and sizes t(p;) = t;
Find a subset @ C P that maximizes G(Q) subject to the restriction:
Cov(Q) < [5] (3)

Hence we must find a subset of P. But there are 2/Fl of such subsets.
This is a huge search space even for small values of |P|. In fact this is an
NP-complete problem as we have shown in [4]. Similar problems have been
proven NP-complete in [8, 3]. However in [8] the dictionary size is not considered,
and the patterns are strings of consecutive symbols. In [3] also the dictionary
size is ignored and coverage of patterns is used as the only criterion to determine
the best subset.

Theorem 1. OPTIMALPATTERNSUBSET Problem is NP-complete.

Since ops is NP-complete we need heuristics in order to obtain an approx-
imate solution for large samples. In what follows we will address a proposed
heuristic.

4 Heuristics for Subset Selection

4.1 A first proposal.

For the approximate solution of OPS problem we propose a greedy algorithm.
Given a set P of frequent meta-symbols found in sample, in each step of our
algorithm the meta-symbol with the greatest exclusive coverage is selected and
removed from P. This process continues until all the symbols in the sample are
covered or the meta-symbols that remain in P do not cover new symbols in the
sample. All the meta-symbols selected in each step are stored in a set B, that is
the proposed dictionary.

1. Let B« ()
2. Set the current coverage C'v « 0.
3. Select the meta-symbol p € P with highest exclusive coverage Covey(p, B).

. Add p to B.

. Remove p from P

. Use the coverage of p to update the current coverage Cv.

. Go to step 3 until |C'v| equals the sample size or P =) or Covexc(q, B) =0
for every q € P.

~N O U

With the strategy described we will obtain the subset of meta-symbols B with
highest coverage. But a good coverage does not guarantee the best compression
ratio. It may occur that meta-symbols with large size and poor frequency or
conversely are included in B. Since we want the inclusion of some meta-symbol
in the dictionary to be well amortized by its use in the sample, this is not
desirable.

Data Compression Using a Dictionary of Patterns 179

4.2 Optimization by local search.

For the improvement of the heuristic described above, we will use hill climbing.
Two different hill climbers will be defined:

MSHC Minimum Step Hill Climber. Searching the better binary string in the
Hamming distance neighborhood of radius 1. Given a binary string that
encodes a subset, we perform a search for the best string between those that
differ from the given one in only one bit.

MRHC Minimum Replacement Hill Climber. Searching the better binary string
in the Hamming distance neighborhood of radius 2. Given a binary string,
we perform a search for the best string between those that exchanges the
position of every bit with value 1 with the position of those bits with value
0.

To find a better subset than the one given by the coverage-based heuristic we
sequentially run both hill climbers: the string obtained by the heuristic is passed
to MSHC, and the output of this climber is thereafter passed to MRHC. Every
hill climber is executed iteratively until no further improvement is obtained or
a given number of evaluations is reached.

5 Experimental results

In order to test the effectiveness of the heuristic methods above, and the whole
compression algorithm, some experiments were done. We generated a set of ran-
dom samples with different sizes. Such samples were built using a short meta-
symbol alphabet. Every sample was compressed using the method described in
this paper, which we call Pattern-based Data Compression (PBDC), and other
well known methods: Huffman codes (HUF), adaptive Huffman (AHUF), arith-
metical encoding (ARIT), Lempel-Ziv-Welch (Lzw), and gzip (Gz1ip), which is
a variant of LZ77. Since the samples were built with a pre-defined set of meta-
symbols, then we are able to calculate, a priori, the compression achieved if such
set is defined as the dictionary of meta-symbols.

For every sample size included in the test, we generate as many samples as
are needed in order to obtain a confidence interval for the mean of compression
ratio with a 95% certainty and a radius below the 5% of mean magnitude.
The results obtained are shown in table 1. The leftmost column contains the
sample size in bytes, the column “Sam” specifies the number of random samples
that were needed, the column labeled “+” contains the radius around the mean
value that determines the confidence interval at 95%, “StdDev” stands for the
standard deviation. The rightmost column in the table contains the theoretical
compression ratio, considering the built-in meta-symbols as the dictionary.

Probably the reader will notice an apparent contradictory result in the first
row of the table, since the compression ratio obtained by PBDC is greater than
the one predicted by theory in the last column. This phenomenon may occur
in short samples, where the accidental combination of dictionary meta-symbols
can produce even better meta-symbols with significantly high probability.

180 Kuri A., Galaviz J.

[Size[Sam|PBDC| + [StdDev]AHUF| HUF|ARIT| LZW|GZIP|Known
128] 12 [0.340] 0.0057] 0.0100] 0.118] 0.070] 0.254] 0.150[0.001] 0.207
256| 40 | 0.506] 0.0262| 0.0844| 0.104] 0.080| 0.342[0.260] 0.202] 0.586
384| 63 0.601| 0.0300| 0.1216| 0.181] 0.163| 0.426| 0.336| 0.311| 0.680
512 66 | 0.680] 0.0337| 0.1397| 0.319] 0.314] 0.513[0.420[0.430] 0.729
1024 67 | 0.739] 0.0357| 0.1489 0.228] 0.225[0.569] 0.434] 0.535] 0.799
2048 | 68 0.764| 0.0379| 0.1596| 0.241] 0.241] 0.679| 0.500| 0.704| 0.836

Table 1. Comparison of PBDC with other compression methods (sample size in bytes).

Compression Methods
(samples with patterns)

Compression ratio

0.0 T T T T T T T T T T T T T T d
128 256 384 512 640 768 896 1024 1152 1280 1408 1536 1664 1792 1920 2048

Sample size (in bytes)

| PBDC v AHUF A HUF > ARIT < LzW W GZIP ® KnownAlph]

Fig. 2. Comparison of average compression ratios for several algorithms on samples
built with meta-symbols.

The data in table 1 are also shown in figure 2, where it is more clear that
the PBDC method outperforms all other methods. It is also clear that the com-
pression ratio achieved by PBDC is close to the theoretical one.

6 Summary and Further Work

We have defined a very general compression method based on a dictionary of
frequent meta-symbols. The meta-symbols in such dictionary are called meta-
symbols, since we can think that the sample was generated by a source that
produces such meta-symbols instead of the single symbols in the original alpha-
bet. Therefore, working under the hypothesis that the sample is composed by
meta-symbols, we try to find its meta-symbolic alphabet or dictionary, made
up by those meta-symbols that minimize the expression of the sample together

Data Compression Using a Dictionary of Patterns 181

with the model that describes its composition. Since the search of such meta-
alphabet is a hard problem, we propose coverage-based heuristic to approximate
its solution.

In order to refine the solution proposed by this heuristic, two different meth-
ods of hill climbing where introduced: MSHC and MRHC. These hill climbers are
executed on the solution proposed by the heuristic described.

Our results show that the approximation proposed by the heuristic and fur-
ther refined by the local optimization performed by hill climbers, provides a
very good solution for the problem addressed and outperforms several usual
data compression algorithms in samples composed by meta-symbols.

Further work is required in two different ways: to test the method with sam-
ples not necessarily composed by meta-symbols and to optimize the performance
of the meta-symbol discovery algorithm used.

References

[1] Barron, A., J. Rissanen and B. Yu, “The Minimum Description Length Principle
in Coding and Modeling”, IEEE Transactions on Information Theory, 1998, pp.
2743-2760.

[2] Burkhardt, Stefan and Juha Kérkkéainen, “Better Filtering with Gapped ¢-Grams”,
Proceedings of 12th Annual Symposium on Combinatorial Pattern Matching CPM
2001, Amihood Amir and Gad M. Landau (editors), Lecture Notes in Computer
Science, No. 2089, 2001, pp. 73-85.

[3] Klein, Shmuel T., “Improving Static Compression Schemes by Alphabet Exten-
sion”, Proceedings of 11th Annual Symposium Combinatorial Pattern Matching
CPM 2000, Raffacle Giancarlo and David Sankoff (editors), Lecture Notes in Com-
puter Science, No. 1848, 2000, pp. 210-221.

[4] Kuri, A. and J. Galaviz, “Pattern-based Data Compression”, in MICAI 2004: Ad-
vances in Artificial Intelligence, Raul Monroy (Editor), Springer Verlag, Lecture
Notes in Artificial Intelligence 2972, 2004, pp. 1-10.

[5] Parida, L. Algorithmic Techniques in Computational Genomics, Doctoral Disser-
tation, Courant Institute of Mathematical Sciences, University of New York, 1998.

[6] Rigoutsos, I. and A. Floratos, “Combinatorial Pattern Discovery in biological se-
quences: The Teiresias Algorithm”, Bioinformatics, Vol. 14, No. 1, 1998, pp. 55—67.

[7] Rissanen, J., “Modeling by Shortest Data Description”, Automatica, Vol. 14, 1978,
pp- 465-471.

[8] Storer, James y Thomas Szymanski, “Data Compression via Textual Substitution”,
JACM, Vol. 29, No. 4, october 1982, pp. 928-951.

[9] Vilo, Jaak, Pattern Discovery from Biosequences, PhD Thesis, Technical Report
A-2002-3, Department of Computer Science, University of Helsinki, 2002.

[10] Ziv, Jacob and Abraham Lempel, ”A Universal Algorithm for Sequential Data
Compression”, IEEE Transactions on Information Theory, Vol. 23, No. 3, 1977,
pp. 337-343.

